Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
J Physiol Sci ; 74(1): 15, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443820

RESUMO

Perfluorooctane sulfonate (PFOS) exerts adverse effects on neuronal development in young population. Limited evidences have shown that early-life PFOS exposure holds a potential risk for developing age-related neurodegenerative diseases such as Alzheimer's disease later in life. The present study investigated the effects of lactational PFOS exposure on cognitive function using one-year-old mice. Dams were exposed to PFOS (1 mg/kg body weight) through lactation by gavage. Male offspring were used for the behavior test battery to assess cognitive function. Western blot analysis was conducted to measure the levels of proteins related to the pathogenesis of Alzheimer's disease. PFOS-exposed mice displayed a mild deficiency in social recognition. In the hippocampus, the expression of tau protein was significantly increased. These results underline a mild effect of developing PFOS exposure on cognitive function and neurodegeneration. The present study presents the long-lasting effects of PFOS in middle-aged period and warrants a potential aftermath.


Assuntos
Ácidos Alcanossulfônicos , Doença de Alzheimer , Fluorocarbonos , Masculino , Feminino , Animais , Camundongos , Lactação , Fluorocarbonos/toxicidade , Hipocampo
2.
Am J Sports Med ; 52(2): 374-382, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38174366

RESUMO

BACKGROUND: Loss of meniscal function in association with degenerative changes affects the development and progression of knee osteoarthritis, for which there is currently no effective treatment. Extracorporeal shockwave therapy (ESWT) is an established treatment for musculoskeletal disorders. However, the therapeutic effect of ESWT on meniscal degeneration remains unclear. PURPOSE: To evaluate the therapeutic effect of ESWT on the degenerated meniscus in an anterior cruciate ligament transection (ACLT) model. STUDY DESIGN: Controlled laboratory study. METHODS: Twelve-week-old male Wistar rats were randomly assigned to 3 groups (normal, ESWT-, and ESWT+). Unilateral ACLT of the right knee was performed in the latter 2 groups. At 4 weeks after ACLT, the ESWT+ group received 800 shockwave impulses at an energy flux density of 0.22 mJ/mm2 in a single session. Histological changes were examined in the posterior portion of the medial meniscus after ESWT (n = 15 per group). Real-time polymerase chain reaction (PCR) was performed after ESWT (n = 5 per group) to analyze the expression of connective tissue growth factor/CCN family member 2 (CTGF/CCN2), sex determining region Y-box 9, vascular endothelial growth factor α, aggrecan, collagen type 1 alpha 2, and collagen type 2 alpha 1 (Col2α1). Immunohistochemistry was used to analyze the expression of CTGF/CCN2 and Ki-67 (n = 5 per group) after ESWT. RESULTS: The meniscal histopathological score at 4 weeks after ACLT was significantly higher than that in the normal group, and the score in the ESWT+ group was significantly lower than that in the ESWT- group at 4 and 12 weeks after ESWT. Real-time PCR revealed that the mRNA expression of CTGF/CCN2 and Col2α1 decreased 4 weeks after ACLT. In the ESWT+ group, real-time PCR revealed that the mRNA expression of CTGF/CCN2 increased 24 hours after ESWT, and the expression of Col2α1 increased 4 weeks after ESWT (all significant data were P < .05). The ratio of CTGF/CCN2-positive cells and Ki67-positive cells was significantly higher in the ESWT+ group after ESWT. CONCLUSION: The present study revealed that ESWT might suppress ACLT-induced meniscal degeneration by stimulating cartilage repair factors and inducing collagen type 2. CLINICAL RELEVANCE: ESWT can be an effective treatment to protect the degenerated meniscus in a rat model of ACLT.


Assuntos
Tratamento por Ondas de Choque Extracorpóreas , Menisco , Ratos , Masculino , Animais , Ratos Wistar , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , RNA Mensageiro , Modelos Animais de Doenças
3.
Adv Med Educ Pract ; 14: 1435-1443, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38149122

RESUMO

Background: The spread of the coronavirus disease (COVID-19) has significantly affected medical education. In particular, conducting practical training in a face-to-face format has become difficult. Purpose: To address this problem, online physiology practice combined with team-based learning (TBL) for deep learning of renal physiology was conducted among second-year medical students. Participants and Methods: The experiment was performed by a group of students, while other students watched online. After the experiment, all students were grouped using breakout rooms. Following a discussion of the data, a clinical case study related to the experiment was conducted using TBL. To examine the effect of online practice in a case study under TBL, the participants completed an anonymous, open-ended, web-based questionnaire after the program, enabling us to compare their expectations and satisfaction. The questionnaire consisted of questions examining students' opinions on the appropriateness of online practice, degree of understanding, ease of asking questions, time efficiency, and the usefulness of case studies using TBL. Results: There was no change in the number of students who participated in the online practice before and after class. After class, more students considered the level of understanding easier and displayed better on-time efficiency than with regular face-to-face training. However, these questions are difficult to answer. Conclusion: Online-based physiology practice combined with clinical case studies under TBL helped maintain students' expectations and satisfaction with the training.

4.
J Vis Exp ; (200)2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37870306

RESUMO

Thyroid hormone (TH) action is essential during the development of the central nervous system, including the cerebellum. In case of TH deficiency in early life such as congenital hypothyroidism, patients display neurological disorders such as cognitive retardation and motor deficits. There are various studies using mouse models with tissue- or cell-specific TH deficiency to investigate the role of TH in the cerebellum. Compared to generalized congenital hypothyroid mice, cerebellar cell-specific TH-deficient mice display milder and subtler ataxic features, making the assessment of motor function difficult when using conventional tests such as the rotarod test. Due to the need for an alternative tool to assess motor function in TH-related animal models, we developed a versatile behavioral method called the "ladder beam test," in which we can design the various ladder tests depending on the severity of ataxia in model mice. We utilized transgenic mice expressing a dominant-negative TH receptor specifically in the cerebellar Purkinje cell, a sole output neuron in the cerebellar cortex modulating motor performance. The newly-built ladder beam test successfully detected robust impairments in motor performance in the transgenic mice at a greater level compared to the rotarod test. Disruption of motor learning was also detected in the ladder beam test but not in the rotarod test. The protocol with this novel behavioral apparatus can be applied to other animal models that may show mild ataxic phenotype to examine subtle changes in cerebellar function.


Assuntos
Cerebelo , Células de Purkinje , Humanos , Camundongos , Animais , Células de Purkinje/fisiologia , Hormônios Tireóideos , Camundongos Transgênicos , Neurônios , Ataxia
5.
Int J Mol Sci ; 24(16)2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37628946

RESUMO

Perfluorooctane sulfonate (PFOS) has been used in a wide variety of industrial and commercial products. The adverse effects of PFOS on the developing brain are becoming of a great concern. However, the molecular mechanisms of PFOS on brain development have not yet been clarified. We investigated the effect of early-life exposure to PFOS on brain development and the mechanism involved. We investigated the change in thyroid hormone (TH)-induced dendrite arborization of Purkinje cells in the primary culture of newborn rat cerebellum. We further examined the mechanism of PFOS on TH signaling by reporter gene assay, quantitative RT-PCR, and type 2 iodothyronine deiodinase (D2) assay. As low as 10-7 M PFOS suppressed thyroxine (T4)-, but not triiodothyronine (T3)-induced dendrite arborization of Purkinje cells. Reporter gene assay showed that PFOS did not affect TRα1- and TRß1-mediated transcription in CV-1 cells. RT-PCR showed that PFOS suppressed D2 mRNA expression in the absence of T4 in primary cerebellar cells. D2 activity was also suppressed by PFOS in C6 glioma-derived cells. These results indicate that early-life exposure of PFOS disrupts TH-mediated cerebellar development possibly through the disruption of D2 activity and/or mRNA expression, which may cause cerebellar dysfunction.


Assuntos
Cerebelo , Iodeto Peroxidase , Animais , Ratos , Iodeto Peroxidase/genética , Células de Purkinje , RNA Mensageiro
6.
Eur Spine J ; 32(10): 3403-3412, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37555955

RESUMO

PURPOSE: Kyphosis involves spines curving excessively backward beyond their physiological curvature. Although the normal structure of the spinal vertebrae is extremely important for maintaining posture and the normal function of the thoracic and abdominal organs, our knowledge concerning the pathogenesis of the disease is insufficient. We herein report that the downregulation of the calcium signaling pathway is involved in the pathogenesis of congenital kyphosis. METHODS: The third to fifth lumbar spine segments, the kyphotic region of Ishibashi (IS) rats, which are used as a model of congenital kyphoscoliosis, were collected. A DNA microarray, quantitative PCR, Western blotting, and immunohistochemistry were used to measure the expression of genes and proteins related to intracellular calcium signaling. RESULTS: We found that the expression of calcium-sensing receptor (CaSR) and transient receptor potential vanilloid 1 (Trpv1)-two receptors involved in the calcium signaling-was decreased in the lumbar spine of IS rats. We also observed that the number of CaSR-immunoreactive and Trpv1-immunoreactive cells in the lumbar spine of IS rats was lower than in wild-type rats. Furthermore, the expression of intracellular molecules downstream of these receptors, such as phosphorylated protein kinase C, c-Jun N-terminal kinase, and neural EGFL-like 1, was also reduced. In fact, the calcium content in the lumbar spine of IS rats was significantly lower than that in wild-type rats. CONCLUSION: These results indicate that adequate calcium signaling is extremely important for the regulation of normal bone formation and may also be a key factor for understanding the pathogenesis of congenital kyphosis.


Assuntos
Cifose , Escoliose , Ratos , Animais , Cálcio , Cifose/patologia , Vértebras Lombares/patologia , Escoliose/genética , Postura/fisiologia , Vértebras Torácicas/patologia
7.
Int J Mol Sci ; 24(10)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37240356

RESUMO

The nuclear estrogen receptor (ER) and G-protein-coupled ER (GPER1) play a crucial role during brain development and are involved in dendrite and spine growth as well as synapse formation. Soybean isoflavones, such as genistein, daidzein, and S-equol, a daidzein metabolite, exert their action through ER and GPER1. However, the mechanisms of action of isoflavones on brain development, particularly during dendritogenesis and neuritogenesis, have not yet been extensively studied. We evaluated the effects of isoflavones using mouse primary cerebellar culture, astrocyte-enriched culture, Neuro-2A clonal cells, and co-culture with neurons and astrocytes. Soybean isoflavone-augmented estradiol mediated dendrite arborization in Purkinje cells. Such augmentation was suppressed by co-exposure with ICI 182,780, an antagonist for ERs, or G15, a selective GPER1 antagonist. The knockdown of nuclear ERs or GPER1 also significantly reduced the arborization of dendrites. Particularly, the knockdown of ERα showed the greatest effect. To further examine the specific molecular mechanism, we used Neuro-2A clonal cells. Isoflavones also induced neurite outgrowth of Neuro-2A cells. The knockdown of ERα most strongly reduced isoflavone-induced neurite outgrowth compared with ERß or GPER1 knockdown. The knockdown of ERα also reduced the mRNA levels of ER-responsive genes (i.e., Bdnf, Camk2b, Rbfox3, Tubb3, Syn1, Dlg4, and Syp). Furthermore, isoflavones increased ERα levels, but not ERß or GPER1 levels, in Neuro-2A cells. The co-culture study of Neuro-2A cells and astrocytes also showed an increase in isoflavone-induced neurite growth, and co-exposure with ICI 182,780 or G15 significantly reduced the effects. In addition, isoflavones increased astrocyte proliferation via ER and GPER1. These results indicate that ERα plays an essential role in isoflavone-induced neuritogenesis. However, GPER1 signaling is also necessary for astrocyte proliferation and astrocyte-neuron communication, which may lead to isoflavone-induced neuritogenesis.


Assuntos
Receptor alfa de Estrogênio , Isoflavonas , Animais , Camundongos , Receptor alfa de Estrogênio/genética , Fulvestranto , Isoflavonas/farmacologia , Genisteína/farmacologia , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Estradiol/farmacologia , Estrogênios
8.
PLoS One ; 17(12): e0277830, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36454860

RESUMO

BACKGROUND: Silencing Mediator of Retinoid and Thyroid hormone receptors (SMRT; NCoR2) is a transcriptional corepressor (CoR) which has been recognized as an important player in the regulation of hepatic lipogenesis and in somatic development in mouse embryo. SMRT protein is also widely expressed in mouse connective tissues, for example adipocytes and muscle. We recently reported that mice with global deletion of SMRT develop significant obesity and muscle wasting which are independent from thyroid hormone (TH) signaling and thermogenesis. However, the tissue specific role of SMRT in skeletal muscle is still not clear. METHODS: To clarify role of SMRT in muscle differentiation, we made myogenic C2C12 clones which lack SMRT protein (C2C12-SKO) by using CRISPR-Cas9. Wild-type C2C12 (C2C12-WT) and C2C12-SKO cells were cultured in differentiation medium, and the resulting gene and protein profiles were compared between the two cell lines both before and after differentiation. We also analyzed muscle tissues which were dissected from whole body SMRT knockout (KO) mice and their controls. RESULTS: We found significant up-regulation of muscle specific ß-oxidation markers; Peroxisome proliferator-activated receptor δ (PPARδ) and PPARγ coactivator-1α (PGC-1α) in the C2C12-SKO cells, suggesting that the cells had a similar gene profile to what is found in exercised rodent skeletal muscle. On the other hand, confocal microscopic analysis showed the significant loss of myotubes in C2C12-SKO cells similar to the morphology found in immature myoblasts. Proteomics analysis also confirmed that the C2C12-SKO cells had higher expression of markers of fibrosis (ex. Collagen1A1; COL1A1 and Fibroblast growth factor-2; FGF-2), indicating the up-regulation of Transforming growth factor-ß (TGF-ß) receptor signaling. Consistent with this, treatment with a specific TGF-ß receptor inhibitor ameliorated both the defects in myotube differentiation and fibrosis. CONCLUSION: Taken together, we demonstrate that SMRT functions as a pivotal transcriptional mediator for both ß-oxidation and the prevention for the fibrosis via TGF-ß receptor signaling in the differentiation of C2C12 myoblasts. In contrast to the results from C2C12 cells, SMRT does not appear to play a role in adult skeletal muscle of whole body SMRT KO mice. Thus, SMRT plays a significant role in the differentiation of myoblasts.


Assuntos
Fibras Musculares Esqueléticas , Correpressor 2 de Receptor Nuclear , PPAR delta , Animais , Camundongos , Diferenciação Celular , Fator 2 de Crescimento de Fibroblastos , Fibrose , Músculo Esquelético , Correpressor 2 de Receptor Nuclear/genética
9.
Proc Natl Acad Sci U S A ; 119(45): e2210645119, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36322758

RESUMO

Thyroid hormones (THs) regulate gene expression by binding to nuclear TH receptors (TRs) in the cell. THs are indispensable for brain development. However, we have little knowledge about how congenital hypothyroidism in neurons affects functions of the central nervous system in adulthood. Here, we report specific TH effects on functional development of the cerebellum by using transgenic mice overexpressing a dominant-negative TR (Mf-1) specifically in cerebellar Purkinje cells (PCs). Adult Mf-1 mice displayed impairments in motor coordination and motor learning. Surprisingly, long-term depression (LTD)-inductive stimulation caused long-term potentiation (LTP) at parallel fiber (PF)-PC synapses in adult Mf-1 mice, although there was no abnormality in morphology or basal properties of PF-PC synapses. The LTP phenotype was turned to LTD in Mf-1 mice when the inductive stimulation was applied in an extracellular high-Ca2+ condition. Confocal calcium imaging revealed that dendritic Ca2+ elevation evoked by LTD-inductive stimulation is significantly reduced in Mf-1 PCs but not by PC depolarization only. Single PC messenger RNA quantitative analysis showed reduced expression of SERCA2 and IP3 receptor type 1 in Mf-1 PCs, which are essential for mGluR1-mediated internal calcium release from endoplasmic reticulum in cerebellar PCs. These abnormal changes were not observed in adult-onset PC-specific TH deficiency mice created by adeno-associated virus vectors. Thus, we propose the importance of TH action during neural development in establishing proper cerebellar function in adulthood, independent of its morphology. The present study gives insight into the cellular and molecular mechanisms underlying congenital hypothyroidism-induced dysfunctions of central nervous system and cerebellum.


Assuntos
Hipotireoidismo Congênito , Células de Purkinje , Camundongos , Animais , Células de Purkinje/metabolismo , Potenciação de Longa Duração/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Cálcio/metabolismo , Receptores dos Hormônios Tireóideos/metabolismo , Depressão , Hipotireoidismo Congênito/metabolismo , Sinapses/metabolismo , Cerebelo/fisiologia
10.
Front Endocrinol (Lausanne) ; 13: 938596, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36072926

RESUMO

Activation and/or modulation of the membrane-associated receptors plays a critical role in brain development. Thyroid hormone (TH) acts on both nuclear receptors (thyroid hormone receptor, TR) and membrane-associated receptors, particularly integrin αvß3 in neurons and glia. Integrin αvß3-mediated signal transduction mediates various cellular events during development including morphogenesis, migration, synaptogenesis, and intracellular metabolism. However, the involvement of integrin αvß3-mediated TH action during brain development remains poorly understood. Thus, we examined the integrin αvß3-mediated effects of TH (T3, T4, and rT3) in the neurons and astrocytes using primary cerebellar culture, astrocyte-enriched culture, Neuro-2A clonal cells, and co-culture of neurons and astrocytes. We found that TH augments dendrite arborization of cerebellar Purkinje cells. This augmentation was suppressed by knockdown of integrin αvß3, as well as TRα and TRß. A selective integrin αvß3 antagonist, LM609, was also found to suppress TH-induced arborization. However, whether this effect was a direct action of TH on Purkinje cells or due to indirect actions of other cells subset such as astrocytes was not clarified. To further study neuron-specific molecular mechanisms, we used Neuro-2A clonal cells and found TH also induces neurite growth. TH-induced neurite growth was reduced by co-exposure with LM609 or knockdown of TRα, but not TRß. Moreover, co-culture of Neuro-2A and astrocytes also increased TH-induced neurite growth, indicating astrocytes may be involved in neuritogenesis. TH increased the localization of synapsin-1 and F-actin in filopodia tips. TH exposure also increased phosphorylation of FAK, Akt, and ERK1/2. Phosphorylation was suppressed by co-exposure with LM609 and TRα knockdown. These results indicate that TRs and integrin αvß3 play essential roles in TH-induced dendritogenesis and neuritogenesis. Furthermore, astrocytes-neuron communication via TR-dependent and TR-independent signaling through membrane receptors and F-actin are required for TH-induced neuritogenesis.


Assuntos
Actinas , Integrina alfaVbeta3 , Actinas/metabolismo , Actinas/farmacologia , Integrina alfaVbeta3/metabolismo , Receptores dos Hormônios Tireóideos/fisiologia , Transdução de Sinais/fisiologia , Receptores beta dos Hormônios Tireóideos , Hormônios Tireóideos/farmacologia , Hormônios Tireóideos/fisiologia
11.
Int J Mol Sci ; 23(14)2022 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-35887216

RESUMO

Perinatal hypothyroidism impairs cerebellar organogenesis and results in motor coordination defects. The thyroid hormone receptor binds to corepressor complexes containing histone deacetylase (HDAC) 3 in the absence of ligands and acts as a transcriptional repressor. Although histone acetylation status is strongly correlated with transcriptional regulation, its role in cerebellar development remains largely unknown. We aimed to study whether the cerebellar developmental defects induced by perinatal hypothyroidism can be rescued by treatment with a specific HDAC3 inhibitor, RGFP966. Motor coordination was analyzed using three behavioral tests. The cerebella were subjected to RT-qPCR and chromatin immunoprecipitation assays for acetylated histone H3. The treatment with RGFP966 partially reversed the cerebellar morphological defects in perinatal hypothyroid mice. These findings were associated with the alleviation of motor coordination defects in these mice. In addition, the RGFP966 administration increased the mRNA levels of cerebellar thyroid hormone-responsive genes. These increases were accompanied by augmented histone acetylation status at these gene loci. These findings indicate that HDAC3 plays an important role in the cerebellar developmental defects induced by perinatal hypothyroidism. The HDAC3 inhibitor might serve as a novel therapeutic agent for hypothyroidism-induced cerebellar defects by acetylating histone tails and stimulating transcription at thyroid hormone-responsive gene loci.


Assuntos
Inibidores de Histona Desacetilases , Hipotireoidismo , Acetilação , Animais , Feminino , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Histona Desacetilases , Histonas/metabolismo , Hipotireoidismo/tratamento farmacológico , Hipotireoidismo/genética , Hipotireoidismo/metabolismo , Camundongos , Gravidez , Hormônios Tireóideos/metabolismo
12.
Sci Rep ; 12(1): 11259, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35788623

RESUMO

SLC26A4 is a known iodide transporter, and is localized at the apical membrane of thyrocytes. Previously, we reported that SLC26A7 is also involved in iodide transport and that Slc26a7 is a novel causative gene for congenital hypothyroidism. However, its detailed role in vivo remains to be elucidated. We generated mice that were deficient in Slc26a7 and Slc26a4 to delineate differences and associations in their roles in iodide transport. Slc26a7-/- mice showed goitrous congenital hypothyroidism and mild growth failure on a normal diet. Slc26a7-/- mice with a low iodine environment showed marked growth failure. In contrast, Slc26a4-/- mice showed no growth failure and hypothyroidism in the same low iodine environment. Double-deficient mice showed more severe growth failure than Slc26a7-/- mice. RNA-seq analysis revealed that the number of differentially expressed genes (DEGs) in Slc26a7-/- mice was significantly higher than that in Slc26a4-/- mice. These indicate that SLC26A7 is more strongly involved in iodide transport and the maintenance of thyroid function than SLC26A4.


Assuntos
Antiportadores de Cloreto-Bicarbonato/metabolismo , Hipotireoidismo Congênito , Iodo , Transportadores de Sulfato/metabolismo , Animais , Antiportadores de Cloreto-Bicarbonato/genética , Hipotireoidismo Congênito/genética , Iodetos , Iodo/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Transportadores de Sulfato/genética
13.
Dev Psychobiol ; 64(3): e22264, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35312052

RESUMO

Elucidating the mechanisms underlying nurturing and neglect behaviors is meaningful but challenging. Recently, we found that CIN85-deficient mice had reduced pituitary hormone prolactin secretion during late pregnancy, and their pups later showed an inhibited nurturing behavior. To examine whether this phenomenon could be reproduced in normal mice and not just CIN85-deficient mice, we investigated the nurturing behavior of offspring born to mothers whose blood prolactin levels had been reduced by bromocriptine administration during late pregnancy. First, to determine when bromocriptine treatment should be started, we investigated the detailed changes in blood prolactin levels in late pregnancy in mice, resulting in the identification of the prepartum prolactin surge. Furthermore, prolactin receptors in the fetal hypothalamus were expressed to the same extent as in the adult hypothalamus. Treatment with bromocriptine decreased the plasma concentrations of prolactin to the basal range throughout late pregnancy. However, against expectations, the proportion of the resultant pups exhibiting nurturing behaviors as adults was as high as that in the mice without bromocriptine treatment. In conclusion, the elimination of prolactin secretion during late pregnancy alone does not induce neglect-like behavior in offspring, suggesting that CIN85-deficient mice appear to involve another factor due to CIN85 deficiency besides prolactin deficiency.


Assuntos
Prolactina , Animais , Bromocriptina/farmacologia , Feminino , Humanos , Comportamento Materno , Camundongos , Mães , Gravidez , Prolactina/farmacologia
14.
J Neurosci Res ; 100(2): 506-521, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34935172

RESUMO

Thyroid hormones play an important role in the central and peripheral nervous system functions. Approximately 50% of adult-onset hypothyroid patients have sensory symptoms including pain, possibly caused by peripheral neuropathy. However, the mechanism causing the pain has not been clarified. We generated an adult-onset hypothyroid model animal by administering 50 ppm propylthiouracil (PTU) for 5 weeks to male mice. Female mice were not tested in this study. Mechanical hypersensitivity, determined by the von Frey hair test, was observed during the PTU exposure and recovered after the exposure termination. The sciatic nerve compound action potential was also analyzed. Under single-pulse stimulation, no significant change in the threshold and conduction velocity was observed in the PTU-administered group. On the other hand, under train-pulse stimulation, the latency delay in the Aδ-fiber component was less in the PTU-administered group in Week 4 of PTU exposure, indicating relative hyperexcitability. Fluticasone, which is the anti-inflammatory agent with an ability to activate the voltage-gated potassium channel subfamily A (Kv1), restored the decrease in the latency change ratio by PTU exposure under the train-pulse stimulation supporting our hypothesis that Kv1 may be involved in the conductivity change. Kv1.1 protein level decreased significantly in the sciatic nerve of the PTU-administered group. These results indicate that adult-onset hypothyroidism causes mechanical hypersensitivity owing to hyperexcitability of the peripheral nerve and that reduction of Kv1.1 level may be involved in such alteration.


Assuntos
Hipotireoidismo , Canal de Potássio Kv1.1 , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Potenciais de Ação , Animais , Regulação para Baixo , Feminino , Humanos , Hipotireoidismo/induzido quimicamente , Hipotireoidismo/complicações , Masculino , Camundongos , Nervo Isquiático
15.
Food Chem Toxicol ; 159: 112751, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34871666

RESUMO

Recent studies showed a possible association between perfluorooctane sulfonate (PFOS) and developmental disabilities. We previously found the specific effects of PFOS exposure on learning and memory, however, its effect on the other developmental disabilities such as motor and social deficits remains unclear. We examined the effect of early lactational PFOS exposure on motor coordination, social activity, and anxiety in male mice. We orally administered a PFOS solution to dams from postnatal day 1-14. At 10 weeks old, we conducted a behavior test battery to evaluate motor performance, social activity, and anxiety, followed by electrophysiology and Western blot analysis. PFOS-exposed mice displayed impaired motor coordination. Whole-cell patch-clamp recordings from Purkinje cells revealed that the short-term and long-term plasticity at parallel fiber-Purkinje cell synapses are affected by PFOS exposure. Western blot analysis indicated that PFOS exposure increased syntaxin binding protein 1 (Munc18-1) and glutamate metabotropic receptor 1 (mGluR1) protein levels, which may be associated with the change in neurotransmitter release from parallel fibers and the level of long-term depression, respectively. The present study demonstrates that lactational PFOS exposure may have disrupted the pre- and postsynaptic plasticity at parallel fiber-Purkinje cell synapses, causing profound, long-lasting abnormal effects on the cerebellar function.


Assuntos
Ácidos Alcanossulfônicos/toxicidade , Cerebelo/efeitos dos fármacos , Exposição Dietética , Fluorocarbonos/toxicidade , Exposição Materna , Neurotoxinas/toxicidade , Animais , Ansiedade , Comportamento Animal/efeitos dos fármacos , Cerebelo/crescimento & desenvolvimento , Cerebelo/fisiopatologia , Feminino , Lactação , Masculino , Camundongos , Desempenho Psicomotor/efeitos dos fármacos
16.
Endocrinol Metab (Seoul) ; 36(4): 703-716, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34365775

RESUMO

The proper organized expression of specific genes in time and space is responsible for the organogenesis of the central nervous system including the cerebellum. The epigenetic regulation of gene expression is tightly regulated by an intrinsic intracellular genetic program, local stimuli such as synaptic inputs and trophic factors, and peripheral stimuli from outside of the brain including hormones. Some hormone receptors are expressed in the cerebellum. Thyroid hormones (THs), among numerous circulating hormones, are well-known major regulators of cerebellar development. In both rodents and human, hypothyroidism during the postnatal developmental period results in abnormal morphogenesis or altered function. THs bind to the thyroid hormone receptors (TRs) in the nuclei and with the help of transcriptional cofactors regulate the transcription of target genes. Gene regulation by TR induces cell proliferation, migration, and differentiation, which are necessary for brain development and plasticity. Thus, the lack of TH action mediators may directly cause aberrant cerebellar development. Various kinds of animal models have been established in a bid to study the mechanism of TH action in the cerebellum. Interestingly, the phenotypes differ greatly depending on the models. Herein we summarize the actions of TH and TR particularly in the developing cerebellum.


Assuntos
Epigênese Genética , Hormônios Tireóideos , Animais , Cerebelo/metabolismo , Regulação da Expressão Gênica , Receptores dos Hormônios Tireóideos
17.
Mol Metab ; 53: 101315, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34390859

RESUMO

OBJECTIVE: The nuclear receptor corepressor 1 (NCOR1) and the silencing mediator of retinoic acid and thyroid hormone (SMRT, also known as NCOR2) play critical and specific roles in nuclear receptor action. NCOR1, both in vitro and in vivo specifically regulates thyroid hormone (TH) action in the context of individual organs such as the liver, and systemically in the context of the hypothalamic-pituitary-thyroid (HPT) axis. In contrast, selective deletion of SMRT in the liver or globally has shown that it plays very little role in TH signaling. However, both NCOR1 and SMRT have some overlapping roles in hepatic metabolism and lipogenesis. Here, we determine the roles of NCOR1 and SMRT in global physiologic function and find if SMRT could play a compensatory role in the regulation of TH action, globally. METHODS: We used a postnatal deletion strategy to disrupt both NCOR1 and SMRT together in all tissues at 8-9 weeks of age in male and female mice. This was performed using a tamoxifen-inducible Cre recombinase (UBC-Cre-ERT2) to KO (knockout) NCOR1, SMRT, or NCOR1 and SMRT together. We used the same strategy to KO HDAC3 in male and female mice of the same age. Metabolic parameters, gene expression, and thyroid function tests were analyzed. RESULTS: Surprisingly, adult mice that acquired NCOR1 and SMRT deletion rapidly became hypoglycemic and hypothermic and perished within ten days of deletion of both corepressors. Postnatal deletion of either NCOR1 or SMRT had no impact on mortality. NCOR1/SMRT KO mice rapidly developed hepatosteatosis and mild elevations in liver function tests. Additionally, alterations in lipogenesis, beta oxidation, along with hepatic triglyceride and glycogen levels suggested defects in hepatic metabolism. The intestinal function was intact in the NCOR1/SMRT knockout (KO) mice. The KO of HDAC3 resulted in a distinct phenotype from the NCOR1/SMRT KO mice, whereas none of the HDAC3 KO mice succumbed after tamoxifen injection. CONCLUSIONS: The KO of NCOR1 and SMRT rapidly leads to significant metabolic abnormalities that do not survive - including hypoglycemia, hypothermia, and weight loss. Hepatosteatosis rapidly developed along with alterations in hepatic metabolism suggesting a contribution to the dramatic phenotype from liver injury. Glucose production and absorption were intact in NCOR1/SMRT KO mice, demonstrating a multifactorial process leading to their demise. HDAC3 KO mice have a distinct phenotype from the NCOR1/SMRT KO mice-which implies that NCOR1/SMRT together regulate a critical pathway that is required for survival in adulthood and is separate from HDAC3.


Assuntos
Homeostase , Correpressor 1 de Receptor Nuclear/metabolismo , Correpressor 2 de Receptor Nuclear/metabolismo , Animais , Feminino , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Correpressor 1 de Receptor Nuclear/deficiência , Correpressor 2 de Receptor Nuclear/deficiência
18.
Front Endocrinol (Lausanne) ; 12: 629100, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33708176

RESUMO

Thyroid hormone (TH) plays important roles in the developing brain. TH deficiency in early life leads to severe developmental impairment in the hippocampus. However, the mechanisms of TH action in the developing hippocampus are still largely unknown. In this study, we generated 3,5,3'-tri-iodo-l-thyronine (T3)-free neuronal supplement, based on the composition of neuronal supplement 21 (NS21), to examine the effect of TH in the developing hippocampus using primary cultured neurons. Effects of TH on neurons were compared between cultures in this T3-free culture medium (-T3 group) and a medium in which T3 was added (+T3 group). Morphometric analysis and RT-qPCR were performed on 7, 10, and 14 days in vitro (DIV). On 10 DIV, a decreased dendrite arborization in -T3 group was observed. Such difference was not observed on 7 and 14 DIV. Brain-derived neurotrophic factor (Bdnf) mRNA levels also decreased significantly in -T3 group on 10 DIV. We then confirmed protein levels of phosphorylated neurotrophic tyrosine kinase type 2 (NTRK2, TRKB), which is a receptor for BDNF, on 10 DIV by immunocytochemistry and Western blot analysis. Phosphorylated NTRK2 levels significantly decreased in -T3 group compared to +T3 group on 10 DIV. Considering the role of BDNF on neurodevelopment, we examined its involvement by adding BDNF on 8 and 9 DIV. Addition of 10 ng/ml BDNF recovered the suppressed dendrite arborization induced by T3 deficiency on 10 DIV. We show that the lack of TH induces a developmental delay in primary hippocampal neurons, likely caused through a decreased Bdnf expression. Thus, BDNF may play a role in TH-regulated dendritogenesis.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Dendritos/metabolismo , Hipocampo/citologia , Neurônios/metabolismo , Hormônios Tireóideos/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Dendritos/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor trkB/metabolismo
19.
Front Endocrinol (Lausanne) ; 11: 554941, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33250856

RESUMO

Soybean isoflavones, such as genistein, daidzein, and its metabolite, S-equol, are widely known as phytoestrogens. Their biological actions are thought to be exerted via the estrogen signal transduction pathway. Estrogens, such as 17ß-estradiol (E2), play a crucial role in the development and functional maintenance of the central nervous system. E2 bind to the nuclear estrogen receptor (ER) and regulates morphogenesis, migration, functional maturation, and intracellular metabolism of neurons and glial cells. In addition to binding to nuclear ER, E2 also binds to the G-protein-coupled estrogen receptor (GPER) and activates the nongenomic estrogen signaling pathway. Soybean isoflavones also bind to the ER and GPER. However, the effect of soybean isoflavone on brain development, particularly glial cell function, remains unclear. We examined the effects of soybean isoflavones using an astrocyte-enriched culture and astrocyte-derived C6 clonal cells. Isoflavones increased glial cell migration. This augmentation was suppressed by co-exposure with G15, a selective GPER antagonist, or knockdown of GPER expression using RNA interference. Isoflavones also activated actin cytoskeleton arrangement via increased actin polymerization and cortical actin, resulting in an increased number and length of filopodia. Isoflavones exposure increased the phosphorylation levels of FAK (Tyr397 and Tyr576/577), ERK1/2 (Thr202/Tyr204), Akt (Ser473), and Rac1/cdc42 (Ser71), and the expression levels of cortactin, paxillin and ERα. These effects were suppressed by knockdown of the GPER. Co-exposure of isoflavones to the selective RhoA inhibitor, rhosin, selective Cdc42 inhibitor, casin, or Rac1/Cdc42 inhibitor, ML-141, decreased the effects of isoflavones on cell migration. These findings indicate that soybean isoflavones exert their action via the GPER to activate the PI3K/FAK/Akt/RhoA/Rac1/Cdc42 signaling pathway, resulting in increased glial cell migration. Furthermore, in silico molecular docking studies to examine the binding mode of isoflavones to the GPER revealed the possibility that isoflavones bind directly to the GPER at the same position as E2, further confirming that the effects of the isoflavones are at least in part exerted via the GPER signal transduction pathway. The findings of the present study indicate that isoflavones may be an effective supplement to promote astrocyte migration in developing and/or injured adult brains.


Assuntos
Isoflavonas/farmacologia , Neuroglia/efeitos dos fármacos , Receptores de Estrogênio/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Neuroglia/fisiologia , Ratos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , /química
20.
Food Chem Toxicol ; 145: 111710, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32861761

RESUMO

The present study aims to examine the effect of early lactational perfluorooctane sulfonate (PFOS) exposures on learning and memory in male mice and reveal the underlying mechanisms involved. PFOS solution was orally administered to dams from the postpartum days 1-14, so that pups would be exposed through breast milk. At 8-10 weeks of age, we performed object location test (OLT), object recognition test (ORT), and pairwise visual discrimination (VD) task. We also performed in vivo microdialysis, and mRNA and protein analysis of genes responsible for hippocampal development and function. In both OLT and ORT, the performance of mice in the PFOS-exposed group was significantly lower than those in the control group. In the VD task, the PFOS-exposed group learned significantly slower than the control group. Concentrations of glutamate and gamma-aminobutyric acid in the dorsal hippocampus were significantly higher in the PFOS-exposed group than in the control group. No notable differences were shown in our mRNA and protein studies. The present study showed that lactational PFOS exposure has a profound, long-lasting neurotoxic effect in the hippocampus and consequently leads to learning and memory deficits.


Assuntos
Ácidos Alcanossulfônicos/toxicidade , Fluorocarbonos/toxicidade , Exposição Materna/efeitos adversos , Neurotoxinas/toxicidade , Efeitos Tardios da Exposição Pré-Natal/psicologia , Animais , Feminino , Ácido Glutâmico/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Humanos , Lactação , Aprendizagem/efeitos dos fármacos , Masculino , Memória/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Efeitos Tardios da Exposição Pré-Natal/etiologia , Efeitos Tardios da Exposição Pré-Natal/genética , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Ácido gama-Aminobutírico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...